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Abstract

Background: Multiple endogenous and exogenous sources of DNA damage contribute to the overall mutation burden in
cancer, with distinct and overlapping combinations contributing to each cancer type. Many mutation sources result in
characteristic mutation signatures, which can be deduced from tumor genomic DNA sequences. Examples include
spontaneous hydrolytic deamination of methyl-cytosine bases in CG motifs (AGEING signature) and C-to-T and C-to-G muta-
tions in 5’-TC(A/T) motifs (APOBEC signature).
Methods: The deconstructSigs R package was used to analyze single-base substitution mutation signatures in more than 1000
cancer cell lines. Two additional approaches were used to analyze the APOBEC mutation signature.
Results: Most cell lines show evidence for multiple mutation signatures. For instance, the AGEING signature, which is the
largest source of mutation in most primary tumors, predominates in the majority of cancer cell lines. The APOBEC mutation
signature is enriched in cancer cell lines from breast, lung, head/neck, bladder, and cervical cancers, where this signature
also comprises a large fraction of all mutations.
Conclusions: The single-base substitution mutation signatures of cancer cell lines often reflect those of the original tumors
from which they are derived. Cancer cell lines with enrichments for distinct mutation signatures such as APOBEC have the
potential to become model systems for fundamental research on the underlying mechanisms and for advancing clinical
strategies to exploit these processes.

DNA damage and mutagenesis are enabling hallmarks of cancer
broadly characterized as genome instability (1). Advances in
DNA sequencing have identified both common and rare geno-
mic alterations that define each type of cancer and, in some
instances, identify therapeutic vulnerabilities. Sequencing has
also provided deeper insights into mutation patterns in cancer
and, together with bioinformatics approaches, has allowed
deconvolution of these complex patterns into more than 25 mu-
tation signatures (reviewed by [2–6]). Each distinct mutation sig-
nature suggests mechanistic linkage to a single source of DNA
damage. For instance, the largest endogenous source of DNA
damage and mutation affecting most cancer types is spontane-
ous deamination of methyl-cytosine bases in 5’-CG dinucleotide
contexts yielding C-to-T mutations. This process is water-

mediated and occurs spontaneously over time, and it therefore
associates with the biological age of the patient (AGEING signa-
ture) (7). The second largest endogenous mutation source across
cancer is attributed to APOBEC-catalyzed deamination of cyto-
sine bases to uracil in 5’-TCW contexts (W ¼ A or T), which, cou-
pled with DNA repair processes, yields both C-to-T and C-to-G
mutations (APOBEC signature) (7–11). APOBEC enzymes are nor-
mally involved in innate antiviral immunity, but at least two
family members contribute to cancer mutagenesis (reviewed in
[5,12]). In comparison, ultraviolet (UV) radiation is an exogenous
source of DNA damage and mutation largely specific to skin
cancer and generally characterized by the cross-linking of adja-
cent pyrimidine bases, which results in C-to-T mutations in 5’-
YC dinucleotide contexts (Y ¼ C or T; UV signature).
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Cancer cell lines often maintain key properties of the tumor
cells from which they are derived. This characteristic enables a
wide range of mechanistic and preclinical studies. An excellent
example is the use of BRCA1 mutant cell lines to discover syn-
thetic lethality upon chemical or genetic inhibition of the poly-
ADP ribose polymerase 1 (PARP1) (13,14). BRCA1 deficiencies are
now the prototypical example of a much broader category of ho-
mologous recombination deficiencies in cancer (HRD or BRCA
signature) (7,15,16). Importantly, tumors with an HRD signature
are often susceptible to PARP inhibitors, even when an underly-
ing recombination defect cannot be defined (16). By analogy, it
is likely that selecting the best cell lines to study other muta-
tional processes, such as APOBEC, will be instrumental for de-
lineating mechanisms and translating fundamental knowledge
into clinical benefits.

Here we present comprehensive analyses of the single-base
substitution mutation signatures in more than 1000 cancer cell
lines through the COSMIC database. Overall, the single-base sub-
stitution mutation signatures of cancer cell lines reflect those that
are also evident in the original tumor types from which they were
derived. We are hopeful that these analyses will become a re-
source for the community as work advances to better understand
the mutation mechanisms in cancer and develop strategies to le-
verage this knowledge for prognostic and diagnostic tests as well
as for development of novel therapeutics.

Methods

Mutation Data Source, Reformatting, and Filtering

The file “CosmicCLP_MutantExport.tsv,” version 81, was down-
loaded on July 17, 2017, from the COSMIC cell line project (CLP)
online database using the Sanger Institute SSH file transfer pro-
tocol (http://cancer.sanger.ac.uk/cell_lines). The mutation data
of 1020 cell lines were formatted and filtered as described in the
following sections. The code for these operations is available
from GitHub (https://github.com/mcjarvis/Mutation-Signatures-
Including-APOBEC-in-Cancer-Cell-Lines-JNCI-CS-Supplementary-
Scripts). To further facilitate the reproducibility of our analyses,
the mutation data from three cell lines are used as examples in
this section (BC-3, BT-474, and NALM-6), and all key raw and
processed numbers are provided in Supplementary Tables 1–3
(available online).

Step 1: Download, organize, and filter raw mutation data:
The fields cell line name (column 5), mutation (column 18),
mutation type (column 20), version of the reference genome
(column 23), chromosome position of the mutation (column 24),
and DNA strand (column 25) were extracted from the
“CosmicCLP_MutantExport.tsv” file using the following command:

awk 0BEGIN{FS¼"\t"; OFS¼"\t"}; 0 !� /̂#/ {print $5, $18, $20,
$23, $24, $25}0CosmicCLP_MutantExport.tsv > cosmic_mut.txt

Step 2: Removal of all non-single-base substitution muta-
tions: All mutations that are not single-base substitutions (eg,
insertions, deletions, and complex multibase substitutions)
were filtered out of the table, leaving single-base substitution
mutations annotated as nonsense, missense, or coding silent
substitutions. This essential filtering step reduced the number
of mutations in BT-474, BC-3, and NALM-6 from 1595 to 1407,
1537 to 1371, and 3291 to 2962, respectively.

Step 3: Additional filtering to remove nonunique chromosomal
positions and file reformatting: All nonunique chromosome posi-
tions were filtered out of each cell line individually, which ensures

that each mutation has only one associated chromosomal posi-
tion within a cell line. A tab-separated file was created with chro-
mosome number (eg, “chr1”), chromosomal position, reference
allele, alternate (mutant) allele, strand of the substitution, and
sample (cell line name) as columns. This table was reordered as
follows for subsequent analyses: chr1-chr9, chrX, chrY, chr10-
chr22, then by ascending chromosomal position, and it was then
saved as a text file. This step reduced mutation numbers in BT-
474, BC-3, and NALM-6 from 1407 to 1021, 1371 to 963, and 2962 to
2110, respectively.

Step 4: Filter out “nonmutations” and “nonmatching muta-
tions”: The hg38 reference genome (FastA file, GCA_000001405.2)
was used to filter out nonmutations and nonmatching mutations
(downloaded from http://hgdownload.soe.ucsc.edu/goldenPath/
hg38/bigZips/ on July 16, 2017). Nonmutations are instances in
which the alternate (mutant) allele matches the reference genome
at that position. Nonmatching mutations are instances in which
the reference allele does not match the reference genome at that
position. These anomalies were filtered out of the single-base sub-
stitution mutation data set. This step caused a modest reduction
in mutation numbers in a small number of cell lines. For instance,
the numbers above for BT-474 and BC-3 were unchanged, but
the number for NALM-6 reduced from 2110 to 2108. These single-
base substation numbers were used to plot medians in Figure 1,
and raw values are listed for each trinucleotide context in
Supplementary Table 1 (available online). Following the filtering
steps described above, the total single-base substitution mutation
count across all cell lines was 663 075.

COSMIC Mutation Signature Determinations

The deconstructSigs R package (17) was used to determine the
mutational signatures in each cancer cell line, including
AGEING (signature 1) and APOBEC (signatures 2 plus 13). First,
hg38 was used to place each single-base substitution mutation
from step 4 above into an appropriate trinucleotide context.
Second, the proportion of each distinct base substitution mu-
tation occurring within a given trinucleotide context was de-
termined. Finally, weights for each distinct mutation
signature were determined using the signatures.cosmic refer-
ence file (https://github.com/raerose01/deconstructSigs).
Signature visualization was done using the ggplot2 package in
R (Figure 2) (18). Mutation loads were also analyzed using a lin-
ear model with a local polynomial regression fitting (a ¼ .75)
and 95% highest posterior density confidence interval.
Supplementary Table 2 (available online) shows the propor-
tion of each COSMIC mutation signature in each cancer cell
line.

Alternative Methods for Quantifying the APOBEC
Mutation Signature

Two additional methods were used for quantification of the
APOBEC mutation signature. The first is simply counting and
calculating the proportions of C-to-T and C-to-G mutations in
TCW motifs in the filtered single-base substitution mutation
data sets described above. The second is an enrichment analy-
sis (19). Briefly, C-to-A mutations are filtered out, as these are
not relevant to APOBEC mutagenesis. Then a formatted text file
containing single-base substitutions was used to generate a ta-
ble with the following information: chromosome, position, tri-
nucleotide context, base substitution (ie, ref > alt), strand sense,
flanking the 20-base sequence on each side (ie, 20 nucleotides
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on both the 5’ and 3’ ends of the substitution, totaling 41 base
sequence), cytosine base counts within this 41-base sequence,
and TCA and TCT trinucleotide contexts within the 41-base se-
quence. The formatted text file was used as input to calculate
the above variables, using the following command (BT-474 is
used as an example):

perl count_trinuc_muts_v8.pl pvcf hg38.fa bt474_mut_sort.txt

Finally, this table was imported into R to calculate the enrich-
ment ratio and subsequent significance, defined as (19):

APOBEC Enrichment ¼ MutðTCWÞ=ConðTCWÞ
MutðCÞ=ConðCÞ

In the above equation, Mut(TCW) is any substitution at a TCA or
TCT trinucleotide context, and Con(TCW) is any TCT or TCA tri-
nucleotide sequence that appears in the 41-base analysis win-
dow (20 bp on 5’ and 3’ sides of each single-base substitution).
Mut(C) and Con(C) represent substitutions at cytosine and num-
ber of cytosine bases in the 41-base window, respectively. The
values in the above equation were formatted into a contingency
table, and a Fisher exact test was conducted to determine the
statistically significant difference between the two ratios (Fisher
P value). A Benjamini-Hochberg correction was applied to these
P values to generate adjusted q values. Cell lines with a q value
of .05 or less were considered enriched for APOBEC signature
mutations (n¼ 129). Following the examples above, the q values
for BT-474 and BC-3 are 1.2 � 10�98 and 7.3 � 10�90, respectively,
whereas the q value for NALM-6 is 1.0 (not statistically signifi-
cant). Supplementary Table 3 (available online) provides a com-
parative listing of the proportions of APOBEC signature
mutations determined using COSMIC, simple counting, and the
enrichment approaches described above.

Results

The COSMIC Cell Line Project has generated whole-exome
sequences and mutation data for 1020 cell lines (20). A total of

30 different tissue/tumor types are represented, including a cat-
egory for cell lines of nonspecified (NS) origin (Figure 1). After fil-
tering to remove insertions, deletions, multinucleotide
mutations, and other complex mutations, median numbers of
single-base substitution mutations ranged from 201 in cancer
cell lines of the pleura to 2062 in those from the endometrium
(Figure 1; raw numbers in Supplementary Table 1, available on-
line). Representative examples include 1021 single-base substi-
tution mutations in the breast cancer cell line BT-474, 963
single-base substitution mutations in the pleural effusion
lymphoma cell line BC-3, and 2108 single-base substitution
mutations in the B-cell line NALM-6. One lung cancer cell line,
NCI-H1395, had fewer than 50 single-base substitution muta-
tions and was excluded from subsequent analyses to minimize
inaccurate signature assignments.

Most cancer cell lines show evidence for multiple mutational
processes (see COSMIC signature depictions in Figure 2; raw
numbers and signature proportions in Supplementary Tables 1
and 2, available online). The most common mutation signature
in tumors is AGEING (COSMIC signature 1) (7). Similarly, for the
six tumor/tissue types represented by more than 50 cancer cell
lines, the proportion with an AGEING signature ranges from
89% (49/55, large intestine) to 100% (57/57, central nervous sys-
tem [CNS]). Moreover, the percentage of AGEING signature
mutations within each cancer cell line varies from as low as the
6% detection limit to as high as 80% in one of the CNS lines
(SW1783). In comparison, the mutational contribution from
APOBEC (COSMIC signatures 2 plus 13) is more variable, ranging
from undetectable in cancer cell lines of the CNS (0/57) and large
intestine (0/55), to intermediate levels in cancer cell lines of the
white blood cells (WBCs; 5%, 9/178), skin (5%, 3/60), and lung
(19%, 34/175), and high in breast cancer cell lines (48%, 25/52).
The percentage of APOBEC signature mutations in each cancer
cell line is similarly variable, ranging from a low of 6% (detection
limit) to a high of 59% (BC-3). However, these analyses reveal a
strong positive correlation in breast cancer cell lines between
the proportions of APOBEC signature mutations and the overall
base substitution mutation loads (Pearson’s correlation P � .005)
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Figure 1. Single-base substitution mutation burdens in COSMIC cancer cell lines. Median numbers of base substitution mutations (bars) and absolute numbers of can-

cer cell lines (filled circles) for the indicated tumor types (central nervous system, nonspecified origin, white blood cell). Whiskers represent variation in terms of cen-

tral quartiles below and above the median, respectively (ie, 25th–50th and 50th–75th percentiles). Large variations in mutation numbers are due to mismatch repair

deficiencies in a subset of cell lines (large intestine) and to small numbers of cell lines (prostate and endometrium). CNS ¼ central nervous system; NS ¼ nonspecified

origin; WBC ¼white blood cell.
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Figure 2. Mutation signatures in COSMIC cancer cell lines. Stacked bar graphs showing the proportion of each COSMIC mutational signature in cancer cell lines repre-

senting the indicated tumor/tissue types (n > 50 per condition) (see Supplementary Tables 1–3, available online, for exact values and for data for tumor/tissue types

4 of 7 | JNCI J Natl Cancer Inst, 2018, Vol. 0, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/jncics/article/2/1/pky002/4942295 by guest on 13 February 2023

https://academic.oup.com/mbe/article-lookup/doi/10.1093/jncics/pky002#supplementary-data


(black histogram bars and black line in the top panel of
Figure 2).

Multiple computational approaches are being used to extract
mutation signatures from complex data sets. For instance, the
overall impact of the APOBEC mutation process has been esti-
mated using the deconstructSigs R package (above) (17), enrich-
ment score calculations (10), and simple counting of C-to-T and
C-to-G mutations in APOBEC-preferred TCW trinucleotide
motifs (9,21). To assess the utility of each approach, each
method was used to independently analyze the filtered single-
base substitution data described above. Interestingly, pairwise
comparisons of the data from each analysis yielded highly sig-
nificant positive correlations (Pearson’s test, P < 2.2 � 10�16)
(Figure 3; Supplementary Table 3, available online). These com-
parisons indicate that each approach is robust, although it
should be noted that the deconstructSigs package requires a sig-
nature to exceed a threshold of 6% before a proportion can be
assigned.

Another way to represent mutation signatures is by visualiz-
ing mutated trinucleotide motifs that define each source of mu-
tation (Figure 4). For instance, cancer cell lines such as HCC1419
and CAL-33 harboring predominantly AGEING signature muta-
tions are readily identifiable by large proportions of C-to-T
mutations in NCG motifs (ACG, CCG, GCG, and TCG; denoted by
asterisks in Figure 4). In most cases, the proportion of C-to-T
mutations in each of these trinucleotide motifs is similar,
reflecting the underlying mechanism of water-mediated deami-
nation of methyl-CG motifs, which is not substantially influ-
enced by the identity of the base pair immediately upstream of
the mutated cytosine base. In contrast, cancer cell lines such as
HCC2218 and NCI-H2009 show clear APOBEC mutation signa-
tures, with large proportions of C-to-T and C-to-G mutations in
both the TCA and TCT motifs (highlighted by boxes in Figure 4).
As expected, many cancer lines such as HDQ-P1 and EJM show a
mixture of these two mutation signatures (Figure 4). Finally,
other cancer cell lines also show two or more combinations of

mutation signatures (Figure 2; Supplementary Table 2, available
online).

Discussion

Here we report a comprehensive analysis of mutation signa-
tures in the COSMIC cancer cell line collection, currently com-
prising 1020 cell lines. As expected, most cell lines show
evidence for multiple mutation signatures. The AGEING signa-
ture is the most common and, in many instances, also the most
abundant in the majority of cancer cell lines. This likely reflects
both the burden of water-mediated methyl-cytosine deamina-
tion events that accumulate during formation of the original
tumors and additional spontaneous events occurring over time
during, in many instances, hundreds of passages in cell culture.
In comparison, several mutation signatures, such as the
APOBEC signature, are less common and only enriched in a sub-
set of cancer cell lines from a subset of tissue/tumor types. For
instance, the APOBEC mutation signature is prevalent in more
than 100 cancer cell lines, with contributions in less than 5% of
cell lines for several cancer types to nearly 50% of cell lines from
breast tumors. This overall distribution largely reflects the
reported occurrence of APOBEC mutagenesis in many different
cancer types, but to larger extents in tumors of the breast, lung,
head/neck, bladder, and cervix (7–11).

One challenge with absolute quantification is that some mu-
tational processes have overlapping signatures (for a recent re-
view, see [6]). The AGEING and APOBEC signatures provide a
clear example of this problem. The spontaneous deamination of
methyl-C-to-T by water in CG motifs results in the AGEING sig-
nature. This occurs at similar frequencies in each of the four dif-
ferent NCG trinucleotide motifs, which is expected from the
spontaneous nature of the underlying chemical process. In
comparison, APOBEC enzymes have preferences for deamina-
tion of cytosine bases in a subset of trinucleotide motifs.

Figure 2. Continued

represented by less than 50 cell lines). COSMIC signature designations are color coded in the legend. COSMIC signatures 2 and 13 combine to make up the APOBEC sig-

nature, and cell lines with this signature are grouped to the right in order of ascending APOBEC signature proportion (black bars). The black line represents the results

of a smoothed linear model (a ¼ .75) of the total number of mutations within each cell line (surrounding lighter region represents a 95% confidence interval). The posi-

tive relationship between increasing mutation numbers and APOBEC signature proportions are statistically significant only in the panel of breast cancer cell lines

(Pearson’s correlation, P � .005). CNS ¼ central nervous system; U ¼ unassigned; WBC ¼white blood cell.
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Figure 3. A comparison of methods used to quantify the APOBEC mutation signature. Scatterplots comparing the relationship between (A) the proportion of COSMIC
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For instance, APOBEC3B has a strong biochemical preference for
TCA and TCG and a considerably weaker preference for TCC and
TCT (8,21). Further complicating matters, APOBEC3B has the bio-
chemical capacity to deaminate methyl-cytosine bases (22–24),
and there is no way to know unambiguously whether the original
cytosine in a CG context was methylated prior to deamination.
Thus, both spontaneous and APOBEC-catalyzed processes lead to
C-to-T mutations in TCG motifs (eg, EJM in Figure 4). This overlap
can be ignored by restraining APOBEC signature events to TCA
and TCT (TCW) motifs, as in the enrichment protocol (19), or

included by estimating the contribution of each process by sub-
tracting the average proportion of AGEING mutations in the other
three trinucleotide motifs from the total proportion of C-to-T
mutations in TCG motifs. Alternatively, an unambiguous signa-
ture “diagnosis” without absolute quantification may be possible
by focusing on mutational events that are unique to each mecha-
nism, such as detection of clustered C-to-G transversions in TCW
motifs for APOBEC.

As described here for mutation signatures, cancer cell lines
often maintain key properties of the tumor cells from which
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Figure 4. Single-base substitution profiles for cancer cell lines with AGING, APOBEC, and mixed mutation signatures. Stacked bar plots showing the proportion of each

of the six different single-base substitutions in 32 possible trinucleotide motifs in the indicated cancer cell lines. Mutations from the central base to A, C, G, and T are

represented by blue, yellow, black, and red shaded bars, respectively. Asterisks and red dashed boxes are used to highlight motifs characteristic of AGEING and

APOBEC mutation processes, respectively. See the text for details and Supplementary Table 3 (available online) for raw counts.
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they are derived. This in turn has the tremendous benefit of en-
abling a wide range of mechanistic and preclinical studies. An
excellent example is the use of BRCA1 mutant cell lines to dis-
cover synthetic lethality upon chemical or genetic inhibition of
the poly-ADP ribose polymerase 1 (PARP1) (13,14). BRCA1 defi-
ciencies are now the prototypical example of a much broader
category of homologous recombination deficiencies in cancer
(HRD or BRCA signature) (7). Importantly, tumors with an HRD
signature are often susceptible to PARP inhibitors, even when
an underlying recombination defect cannot be defined (16). By
analogy, it is likely that selecting the best cell lines to study
other mutational processes, such as APOBEC, will be instrumen-
tal for delineating mechanisms and translating fundamental
knowledge into clinical benefits.
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